大数据的障碍:数据质量和旧观念成见
TT中国 12年06月11日 16:56 【转载】 作者:TechTarget中国 责任编辑:王振
导读:利用大数据和分析法将会对企业未来业绩产生重大影响,重整整个行业并孕育新的产业。然而,还面临着很多挑战。它们从众所周知的缺乏数据科学人员来处理大数据,到更加棘手且很少提及的根源于人性的问题。
利用大数据和分析法将会对企业未来业绩产生重大影响,重整整个行业并孕育新的产业。然而,还面临着很多挑战。它们从众所周知的缺乏数据科学人员来处理大数据,到更加棘手且很少提及的根源于人性的问题。
后者之一是人类聚积数据的倾向。另一个是人类仍然固守先入为主的倾向,即使数据结果明显不同。最近举办的麻省理工斯隆学院CIO研讨会就大数据和分析法发言的数据专家们取得了共识。发现地雷?希望落空?那些已经取得进展的企业已经知道,大数据和分析法没有最终真理。迭代就是全部,专家们也同意。
不仅如此,除了迭代的价值, CIO们可以将最佳实践抛于脑后。正在兴起的未来实践才是深入研究大数据的公司最可以依靠的,在旧金山工作的计算机科学家Michael Chui说。他是麦肯锡全球研究院高级研究员,该研究院是位于纽约的麦肯锡咨询公司的研究机构。
“我们知道这不可行:等到5年后完美的数据仓库出现。”Chui说,他是去年重大麦肯锡大数据价值报告的作者。
相对地看待数据质量
Chui说,事实上,沉迷于数据质量是很多公司需要克服的第一个障碍,如果他们希望有效的使用大数据。数据的精确性对银行财务报告是至关重要的。然而,不精确的数据包含了模式可以突出业务问题或者提供可以产生重要价值的洞察力,比如另一个研讨会专家小组的相关新闻报道的,“抓住大数据和分析法,否则将落伍,MIT专家小组称”
专门小组成员Shvetank Shah说,相对那些快马加鞭以取得最佳质量数据的组织,那些“了解数据质量”的组织,即使使用元标签或颜色编码来标识数据质量-,对大数据的进展更快。他是华盛顿特区的咨询公司(CEB)的执行董事,一家位于。
Shah提醒道,然而大数据结构的混乱性使得商业才智至关重要:重视经理了解何时值得去追求这些数据的能力。他说:“你雇佣经理的原因就是:去分析,去联系和迭代。”