直面挑战:大数据存储服务选择最佳做法
IT168 12年05月03日 14:16 【转载】 作者:剑鱼 责任编辑:王振
导读:磁盘存储就像是衣橱,永远不够用,在大数据时代,这一点尤为突出。“大数据”意味着需要比传统存储平台处理更多的数据。那么这对于CIO意味着什么呢?意味着他们将需要做出更多的努力,而可供参考的信息却很少。
磁盘存储就像是衣橱,永远不够用,在大数据时代,这一点尤为突出。“大数据”意味着需要比传统存储平台处理更多的数据。那么这对于CIO意味着什么呢?意味着他们将需要做出更多的努力,而可供参考的信息却很少。
不过,在为大数据选择存储服务时也并不是完全无迹可寻。
何谓大数据
首先,我们需要清楚大数据与其他类型数据的区别以及与之相关的技术(主要是分析应用程序)。大数据本身意味着非常多需要使用标准存储技术来处理的数据。大数据可能由TB级(或者甚至PB级)信息组成,既包括结构化数据(数据库、日志、SQL等)以及非结构化数据(社交媒体帖子、传感器、多媒体数据)。此外,大部分这些数据缺乏索引或者其他组织结构,可能由很多不同文件类型组成。
由于这些数据缺乏一致性,使标准处理和存储技术无计可施,而且运营开销以及庞大的数据量使我们难以使用传统的服务器和SAN方法来有效地进行处理。换句话说,大数据需要不同的处理方法:自己的平台,这也是Hadoop可以派上用场的地方。
Hadoop是一个开源分布式计算平台,它提供了一种建立平台的方法,这个平台由标准化硬件(服务器和内部服务器存储)组成,并形成集群能够并行处理大数据请求。在存储方面来看,这个开源项目的关键组成部分是Hadoop分布式文件系统(HDFS),该系统具有跨集群中多个成员存储非常大文件的能力。HDFS通过创建多个数据块副本,然后将其分布在整个集群内的计算机节点,这提供了方便可靠极其快速的计算能力。
从目前来看,为大数据建立足够大的存储平台最简单的方法就是购买一套服务器,并为每台服务器配备数TB级的驱动器,然后让 Hadoop来完成余下的工作。对于一些规模较小的企业而言,可能只要这么简单。然而,一旦考虑处理性能、算法复杂性和数据挖掘,这种方法可能不一定能够保证成功。